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Definition, Challenges and Approach

 Map-based localization

— The robot estimates its position using perceived information and a
map

— The map
* might be known (localization)
* Might be built in parallel (simultaneous localization and mapping - SLAM)

* Challenges T e

i Wh 17 2
— Measurements and the map are inherently -l -
error prone

— Thus the robot has to deal with uncertain
information

* Probabilistic map-base localization
* Approach

— The robot estimates the belief state about its
position through an ACT and SEE cycle
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SEE and ACT to improve belief state

= Robot is placed somewhere in the
environment — location unknown

p(x)
A
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SEE and ACT to improve belief state

= Robot is placed somewhere in the .
environment — location unknown

= SEE: The robot queries its sensors
» finds itself next to a pillar .
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EE565: Mobile Robotics Module 4: Localization and Mapping

SEE and ACT to improve belief state

= Robot is placed somewhere in the =
environment — location unknown .
» SEE: The robot queries its sensors .
» finds itself next to a pillar "
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EE565: Mobile Robotics Module 4: Localization and Mapping

SEE and ACT to improve belief state

= Robot is placed somewhere in the = ACT: Robot moves one meter forward
environment — location unknown = motion estimated by wheel encoders
= = accumulation of uncertainty

|
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SEE and ACT to improve belief state

. = ACT: Robot moves one meter forward
= motion estimated by wheel encoders
= = accumulation of uncertainty
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EE565: Mobile Robotics Module 4: Localization and Mapping

SEE and ACT to improve belief state

= Robot is placed somewhere in the .
environment — location unknown .

= SEE: The robot queries its sensors again
» finds itself next to a pillar
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SEE and ACT to improve belief state

= Belief update (information fusion)
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Using Motion Model and its
Uncertainties

= The robot moves and estimates its position through its proprioceptive sensors
= Wheel Encoder (Odometry)

= During this step, the robot’s state uncertainty grows

p(x)
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Estimation of Position based on
Perception and Map

= The robot makes an observation using its exteroceptive sensors
= This results in a second estimation of the current position

p(x)

Robot's belief before
| SEE

the observation
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Fusion of Prior Belief with Observation

= The robot corrects its position by combining its belief before the observation
with the probability of making exactly that observation

= During this step, the robot’s state uncertainty shrinks

Robot’s belief
update

p(x)
A

Robot's belief before
the observation
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The Estimation Cycle (ACT-SEE)
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Belief Representation
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ACT - SEE Cycle for Localization

 SEE: The robot queries its sensors

X
oy
o

— finds itself next to a pillar . M
e ACT: Robot moves one meter T =
forward A A A

encoders ‘

— accumulation of uncertainty

 SEE: The robot queries its sensors %" i - i
— again — finds itself next to a pillar T_‘_A_A__,
e Belief update (information fusion) ,,, l l l

L
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Refresher on Probability Theory: joint
distribution

* p(x,y):joint distribution representing the
probability that the random variable X takes
on the value x and that Y takes on the valuey

 If X and Y are independent we can write:

p(x,y) =px) p(y)



Refresher on Probability Theory:
conditional probability

* p(x|y): conditional probability that describes the
probability that the random variable X takes on
the value x conditioned on the knowledge that Y
for sure takes vy.

_p(x,y)
p(xly) = >0

 andif X and Y are independent (uncorrelated)
we can write:

p(x)p(x)
p(y)

p(xly) = = p(x)



Refresher on Probability Theory:
theorem of total probability

* The theorem of total probability (convolution)

originates from the axioms of probability theory
and is written as:

p(x) = Z p(x|y)p(y) for discrete probabilities
>

p(x) =j p(x|y)p(y)dy for continuous probabilities

« This theorem is used by both Markov and
Kalman-filter localization algorithms during the
prediction update.



Refresher on Probability Theory: the
Bayes rule

 The Bayes rule relates the conditional probability
p(x|y) toits inverse p(y|x)

» Under the condition that p(y) > 0, the Bayes
rule is written as:

p(xly) = p(y[x)p (x)
p(¥)
p(x|y) = np(y]x)p(x) n = p(y)~*! normalization factor ([ p = 1)

* This theorem is used by both Markov and

Kalman-filter localization algorithms during the
measurement update.



Markov localization: applying
probability theory to localization
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Basics and Assumption

* Discretized pose representation x;—> grid map

* Markov localization tracks the robot’s
belief state bel(x;) using an arbitrary
probability density function to
represent the robot’s position

* Markov assumption: Formally, this means -
that the output of the estimation process is a function x;
only of the robot’s previous state x;_4; and its most recent
actions (odometry) u, and perception z;.

p(xelxo, Up -+ Ug, Z¢ -+ 20) = P(Xe|Xe—1, Up, 2¢)

 Markov localization addresses the global localization
problem, the position tracking problem, and the kidnapped
robot problem.
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Applying Probability Theory to
Localization

* ACT | probabilistic estimation of the robot’s
new belief state bel(x,) based on the
previous location bel(x;_,) and the
probabilistic motion model p (x;|ug, x¢—1)
with action u; (control input)

— application of theorem of total probability /
convolution

bel(x;) = J. p(xe|ue, xp—1)bel(xs—,) dx,_;  for continuous probabilities

bel(x;) = Z p(xelug, xp—1)bel(xp—q) for discrete probabilities
Xt—1



Applying Probability Theory to
Localization

* SEE | probabilistic estimation of the robot’s new belief
state bel(x,) as a function of its measurement data
z; and its former belief state bel(x;) :

— application of Bayes rule
bel(x¢) = np(z¢|xe, M)bel (x;)

* where p(z;|x;, m;) is the probabilistic measurement
model (SEE), that is, the probability of observing the
measurement data z; given the knowledge of the map
m, and the robot’s position x;. Thereby n = p(y)1tis
the normalization factor so that ).;p = 1.



The Basic Algorithms for Markov

Localization
For all x; do
bel(xt) = Xy, p(xelue, xe—1)bel(xe—,) (prediction update)
bel(x;) = np(z¢|x,, M)bel(x;) (measurement update)

endfor
Return bel(x;)

* Markov assumption: Formally, this means
that the output is a function x; only of the
robot’s previous state x;_; and its most recent
actions (odometry) u; and perception z;.



Using Motion Model and its
Uncertainties

A —
ars } bel(xi_1) prior belief
0.5 4
0.25 |
X
. —_—
i 2 3
A —
ors } bel(x;) prediction update convolution
os 4+
. bel(x,) = Z p(xe|ue, X g )bel(xe_y)dx,_4 /,/
- - .-‘{'E_L { x
: : l l l — L I I I I I —"

1T 1 T 1T 1T 1T 1
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 25 30 31 32

30.03.2015 Dr. Ahmad Kamal Nasir 28



Using Motion Model and its
Uncertainties
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Estimation of Position based on
Perception and Map
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Extension to 2D

The real world for mobile robot is at least 2D
(moving in the plane)
— discretized pose state space (grid) consists of x,y, 6

— Markov Localization scales badly with the size of
the environment

Space: 10 m x 10 m with a grid size of 0.1 m
and an angular resolution of 1°
— 100-100-360 = 3.6 10° grid points (states)

— prediction step requires in worst case (3.6 10°)?
multiplications and summations

Fine fixed decomposition grids result in a huge state space
— Very important processing power needed
— Large memory requirement
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Reducing Computational Complexity

* Adaptive cell decomposition

 Motion model (Odomety) limited ]
to a small number of grid points '

* Randomized sampling e

— Approximation of belief state by a representative subset of
possible locations

— weighting the sampling process with the probability values
— Injection of some randomized (not weighted) samples

— randomized sampling methods are also known as particle
filter algorithms, condensation algorithms, and Monte
Carlo algorithms.




b=

Kalman Filter Localization: applying
probability theory to localization

position Position Update
(estimationfusion)
M
Encoder
(e.g. odometry)
ACT: Motion predicted
(motors) position matched
observations

= =

2ls

SIS

o |w

E (=]
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Map predicted . -

(data base) observations - Matching
Prediction (ACT) based on previous estimate and odometry
Observation (SEE) with on-board sensors measured
i i P observations

Measurement prediction based on prediction and map T (sensor data / features)

Matching of observation and map
Estimation — position update (posteriori position)
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Basics and assumption

Continuous pose representation x,

—
—

Kalman Filter Assumptions: >< = _| L

= Error approximation with normal distribution:

x = N(u, o?) (Gaussian model) w "

= Qutput v, distribution is a linear (or linearized) - —

function of the input distribution: v = Ax; + Bx,

Kalman filter localization tracks the robot’s
belief state p(x,) typically as a single p(xe)
hypothesis with normal distribution. ‘

Kalman localization thus addresses the
position tracking problem, but not the u
global localization or the kidnapped robot

problem.

>
-

30.03.2015 Dr. Ahmad Kamal Nasir 34



prediction (odometry) - ACT

)_
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30.03.2015

Observation - SEE
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Observations in Sensor Model Space
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Measurement Prediction
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Measurement Prediction in Model
Space

0 = %] = W m)
ZyT = .| = Xg, M
t ft}. t
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Matching in Sensor Model Space

r
ﬂ v = [Eti _ftj] \
T =1 L.
No match! v, (Zgn,Y) v = gP
Wall not
observed E”‘-’t = HJ-P,; - HI' + R,
i \ /\
—1T at 0
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Estimation

For each found match we can now estimate an position update:

X; =Xy + Kv;

where g — ﬁthT(zmt)_l

is the Kalman gain

and the corresponding position
covariance P; :

Pf=Pf KsztK
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Kalman Filter Localization in summery

1. Prediction (ACT) based on previous estimate and cdometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4, Matching of observation and map
5. Estimation — position update (posteriori position)
Estimation:
Robot’s belief
update
plx
,U( ) E:haerva_tion:_
A Prediction: Probab 'tj_
Robot’s belief mak ng t -
before the | observatior
| observation
! =/-I
-~
X; Xt Xe X
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EE565: Mobile Robotics Module 4: Localization and Mapping

Questions
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